

Física Teórica 3

2a prova - 2o período de 2016 - 26/11/2016

NO	TΑ	D٨
PF	۲O۱	/A

Atenção: Leia as recomendações abaixo antes de fazer a prova.

- 1. A prova consiste em 15 questões de múltipla escolha, e terá duração de 2 horas.
- 2. Os aplicadores não poderão responder a nenhuma questão, a prova é autoexplicativa e o entendimento da mesma faz parte da avaliação.
- 3. É permitido o uso apenas de calculadoras científicas simples (sem acesso wifi ou telas gráficas).
- 4. É expressamente proibido portar telefones celulares durante a prova, mesmo no bolso. A presença de um celular levará ao confisco imediato da prova e à atribuição da nota zero.
- Antes de começar, assine seu nome e turma de forma LEGÍVEL em todas as páginas e no cartão de respostas ao lado.
- Marque as suas respostas no CARTÃO RESPOSTA. Preencha INTEGRALMENTE (com caneta) o círculo referente a sua resposta.
- 7. Assinale apenas uma alternativa por questão, e em caso de erro no preenchimento, rasure e indique de forma clara qual a resposta desejada.
- 8. Analise sua resposta. Ela faz sentido? Isso poderá ajud-ar você a encontrar erros.
- **9.** Caso alguma questão seja anulada, o valor da mesma será redistribuído entre as demais.
- Escolha as respostas numéricas mais próximas do resultado exato.

Nome					
Prof(a)			Turma		
AB	CDE		_	CDE	
100	000	1		000	
3 00	000	1		000	
400	000	1	4 00	000	
5 00	000	1	5 00	000	
600	000				
700	000				
800	000				
9 00	000				
	lo professor) A	в()c() d(\supset	
Get this form Z	ipGrade.c	on	ĭ E∟"∟" }	opyright 2015 ZipGrade LLC- his work available under Treative Commons Attribution- hareAlike 3.0 license.	

Constantes e conversões: $1 \text{ m}^3 = 10^6 \text{cm}^3 = 10^3 \text{L}$ 1 atm = 101,3 kPa $\rho_{\text{água}} = 10^3 \text{kg/m}^3$ $c_{\text{água}} = 4196 \text{J/(kg K)}$ $L_{f-\text{água}} = 3,33 \times 10^5 \text{J/kg}$ $L_{v-\text{água}} = 22,6 \times 10^5 \text{J/kg}$ $T_F = (9/5) T_C + 32$ $T_K = T_C + 273$ $T_3 = 273,16 \text{K}$ $k_B = 1,38 \times 10^{-23} \text{J/K}$ $N_A = 6,02 \times 10^{23}$ $1u = 1,66 \times 10^{-27} \text{kg}$ R = 8,314 J/mol K $c = 3,0 \times 10^8 \text{m/s}$ $v^{\text{som-ar}} = 343 \text{m/s}$ Hidro e elasticidade: $F/A = Y \Delta L/L_0$ $P = P_0 + pgh$ $P + \frac{1}{2}\rho v^2 + \rho gy = cte$ Calor: $Q = mc\Delta T = nC\Delta T$ Q = mL $dQ/dt = k(A/L)\Delta T$ $dQ/dt = e\sigma A T^4$ $dQ_{res}/dt = e\sigma A (T^4 - T_0^4)$ Termodinâmica: N = M/m $n = N/N_A$ $\lambda = V/(N4\sqrt{2}r^2)$ $PV = Nk_B T = nRT$ $\epsilon_{\text{med}} = (1/2) \text{mv}_{\text{rms}}^2 = (3/2) \text{k}_B T$ $W_{Isoterm} = -nRT In(V_f/V_i)$ $W_{adiab} = (P_f V_f - P_i V_i)/(\gamma - 1)$ $\Delta E^{\text{térm}} = nC_V \Delta T = Q^{\text{receb-gás}} + W^{\text{sobre-gás}} = Q^{\text{recebido}} - \int P dV$ $C_P - C_V = R$ $C_V^{\text{Mono}} = 3R/2$ $C_V^{\text{Diat}} = 5R/2$ $\gamma = C_P/C_V$ $(TV^{\gamma - 1} = cte$ e $PV^{\gamma} = cte'$) $t_{\text{transf_adiabat}}$ $\eta = W^{\text{útil}}/Q_Q$ $K = Q_F/W^{\text{entra}}$ $\eta_{\text{Carnot}} = 1 - T_F/T_Q$ $K_{\text{Carnot}} = T_F/(T_Q - T_F)$ Ondas: $D(x,t) = Asen(kx - \omega t + \phi_0) = Asen(k(x-vt) + \phi_0) = Asen(\phi)$ $k = 2\pi/\lambda$ $\omega = 2\pi/T$ $v = \lambda f = \omega/k$ $v_{\text{corda}} = (T_c/\mu)^{1/2}$ $I = P/\text{Area} = (10dB) log(I/I_0)$, $I_0 = 1,0 \times 10^{-12} \text{W/m}^2$